4.7 Article

Trajectory-based traffic management inside an autonomous vehicle zone

Journal

TRANSPORTATION RESEARCH PART B-METHODOLOGICAL
Volume 120, Issue -, Pages 76-98

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.trb.2018.12.012

Keywords

Trajectory-based traffic management; Autonomous vehicles; Mixed integer program; Rolling horizon algorithm

Funding

  1. National Science Foundation of China [71671147]

Ask authors/readers for more resources

This paper studies a trajectory-based traffic management (TTM) problem for the purpose of managing traffic in a road facility reserved exclusively for autonomous vehicles (AV). The base TTM model aims to find optimal trajectories for multiple AVs while resolving inter-vehicle conflicts in the most generic way. The model is formulated as a mixed integer program (MIP) that can be solved using off-the-shelf solvers. To improve computational efficiency, a specialized algorithm based on the rolling horizon approach is also developed. We then show that the base TTM model can be easily extended to first accommodate scheduling decisions (the rrms model) and to further impose equity constraints (the TTMSE model). For the simplest network and homogeneous users, solutions to TTMS and TTMSE are similar, respectively, to system optimal (SO) and user equilibrium (UE) solutions of Vickrey's bottleneck model. Numerical experiments highlight TTM's ability to simultaneously generate optimal trajectories for multiple vehicles. They also show that, while solving TTM exactly is computationally demanding, obtaining good approximate solutions can be accomplished efficiently by the rolling horizon algorithm. (C) 2019 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available