4.7 Article

A new perspective of triptolide-associated hepatotoxicity: Liver hypersensitivity upon LPS stimulation

Journal

TOXICOLOGY
Volume 414, Issue -, Pages 45-56

Publisher

ELSEVIER IRELAND LTD
DOI: 10.1016/j.tox.2019.01.005

Keywords

Triptolide; LPS; Hepatotoxicity; Apoptosis; Necroptosis

Funding

  1. National Natural Science Foundation of China [81773995, 81320108029, 81573690, 81573514, 81773827]
  2. Natural Science Foundation of Jiangsu Province [BK20151439]
  3. National Major Scientific and Technological Special Project for Significant New Drugs project [2015ZX09501004-002-004]
  4. Specific Fund for Public Interest Research of Traditional Chinese Medicine, Ministry of Finance [201507004-002]
  5. Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)

Ask authors/readers for more resources

Objective: This study was designed to investigate whether the mice treated with triptolide (TP) could disrupt the liver immune homeostasis, resulting in the inability of the liver to eliminate the harmful response induced by lipopolysaccharide (LPS). In addition, we explored whether apoptosis and necroptosis played a critical role in the progression of the hepatotoxicity induced by TP-LPS co-treatment. Methods: Female C57BL/6 mice were continuously administrated with two different doses of TP (250 mu g/kg and 500 mu g/kg) intragastrically for 7 days. Subsequently, a single dose of LPS (0.1 mg/kg) was injected intraperitoneally to testify whether the liver possesses the normal immune function to detoxicate the exogenous pathogen's stimulation. To prove the involvement of apoptosis and necroptosis in the liver damage induced by TP-LPS co-treatment, apoptosis inhibitor Z-VAD-FMK (FMK) and necroptosis inhibitor necrostatin (Nec-1) were applied before the stimulation of LPS to diminish the apoptosis and necroptosis respectively. Results: TP or LPS alone did not induce significant liver damage. However, compared with TP or LPS treated mice, TP-LPS co-treatment mice showed obvious hepatotoxicity with a remarkable elevation of serum ALT and AST accompanied by abnormal bile acid metabolism, a depletion of liver glycogen storage, aberrant glucose metabolism, an up-regulation of inflammatory cell infiltration, and an increase of apoptosis and necroptosis. Intraperitoneal injection of FMK or Nec-1 could counteract the toxic reactions induced by TP-LPS co-treatment. Conclusion: TP could disrupt the immune response, resulting in hypersensitivity of the liver upon LPS stimulation, ultimately leading to abnormal liver function and cell death. Additionally, apoptosis and necroptosis played a vital role in the development of liver damage induced by TP-LPS co-treatment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available