4.7 Article

An approach to decision-making analysis for implementation of structural health monitoring in bridges

Journal

STRUCTURAL CONTROL & HEALTH MONITORING
Volume 26, Issue 6, Pages -

Publisher

JOHN WILEY & SONS LTD
DOI: 10.1002/stc.2352

Keywords

Bayesian decision analysis; bridge structural health monitoring; event trees; expected utility theory; value of information

Ask authors/readers for more resources

Adverse situations such as prolonged downtime of a structure, unnecessary inspections, expensive allocation of personal and equipment, deficient structural performance, or failure can be avoided by using structural health monitoring (SHM). Enhanced structural safety is the leading reason for its implementation, but one of the remaining obstacles to fully implement SHM systems deals with justifying their economic benefit. At any point in time, the preference towards one particular action depends on factors such as the probability of the triggered events and their consequences. All the possible decisions and relevant information can be illustrated by decision tree models, and the optimal decision corresponds to the one with the highest utility. Applying the Bayesian Theorem, the assumed prior probabilities of the structural state are updated in the light of new information provided by a system and the optimal decision is revised. This paper proposes a dynamic decision-making framework to manage civil engineering structures, where the ultimate goal is to achieve greater overall economy without jeopardizing safety. This paper covers a case study of a bridge where the optimal SHM and maintenance decisions are determined in the context of different scenarios in which the event probabilities and associated costs are made-up.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available