4.7 Article

Comparison of urbanization and climate change impacts on urban flood volumes: Importance of urban planning and drainage adaptation

Journal

SCIENCE OF THE TOTAL ENVIRONMENT
Volume 658, Issue -, Pages 24-33

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.scitotenv.2018.12.184

Keywords

Landuse changes; GCMs; SWMM drainage modeling; Annual total runoff; Flood risks

Funding

  1. National Natural Science Foundation of China [51809049]
  2. Science and Technology Program of Guangzhou, China [201804010406]
  3. Public Welfare Research and Ability Construction Project of Guangdong Province, China [2017A020219003]

Ask authors/readers for more resources

Understanding the drivers behind urban floods is critical for reducing its devastating impacts to human and society. This study investigates the impacts of recent urban development on hydrological runoff and urban flood volumes in a major city located in northern China, and compares the urbanization impacts with the effects induced by climate change under two representative concentration pathways (RCPs 2.6 and 8.5).We then quantify the role of urban drainage system in mitigating flood volumes to inform future adaptation straiegies. A geospatial database on landuse types, surface imperviousness and drainage systems is developed and used as inputs into the SWMM urban drainage model to estimate the flood volumes and related risks under various urbanization and climate change scenarios. It is found that urbanization has led to an increase in annual surface runoff by 208 to 413%, but the changes in urban flood volumes can vary greatly depending on performance of drainage system along the development. Specifically, changes caused by urbanization in expected annual flood volumes are within a range of 194 to 942%, which are much higher than the effects induced by climate change under the RCP 2.6 scenario (64 to 200%). Through comparing the impacts of urbanization and climate change on urban runoff and flood volumes, this study highlights the importance for re-assessment of current and future urban drainage in coping with the changing urban floods induced by local and large-scale changes. (C) 2018 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available