4.8 Article

Experimental study of the effect of using phase change materials on the performance of an air-cooled photovoltaic system

Journal

RENEWABLE & SUSTAINABLE ENERGY REVIEWS
Volume 101, Issue -, Pages 103-111

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.rser.2018.11.001

Keywords

Phase change materials; Photovoltaic thermal; Heat transfer; Electrical efficiency; Solar energy

Ask authors/readers for more resources

Nowadays, solar energy is harvested in two different ways including the extraction of thermal energy in solar collectors and electrical energy generation in photovoltaic panels. The Photovoltaic panels convert a small fraction of absorbed solar radiation into electrical energy and waste the rest in the form of thermal energy that results in increasing the panel temperature and decreasing the electrical efficiency. Photovoltaic thermal systems (PVT) equipped with phase-change materials (PCM) are capable of benefiting from the storage when phase change happens. In this manuscript, the effect of PCMs deployment on the performance of an air-cooled photovoltaic system is investigated, experimentally. As such, the effect of PCM is deliberated in a setup provided in which the PVT is equipped with a sheet of PCM. Herein, the first case considers a natural convection and the other three cases regard three different forced air convection. The experimental results indicate that using PCM sheets of six millimeters thick leads to reducing the panel temperature to 4.3, 3.4, 3.6 and 3.7 degrees C in average in a natural flow mode, forced high-velocity, medium and low velocity, respectively. Moreover, decreasing the temperature results in increasing the outlet power and electrical efficiency. Accordingly, it is concluded that using PCMs leads to a significant increase in natural and forced convection situations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available