4.8 Review

Power tracking techniques for efficient operation of photovoltaic array in solar applications - A review

Journal

RENEWABLE & SUSTAINABLE ENERGY REVIEWS
Volume 101, Issue -, Pages 82-102

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.rser.2018.10.015

Keywords

Photovoltaic system; MPPT techniques; Conventional methods; Partial shading; Bio-inspired algorithms

Ask authors/readers for more resources

This paper presents a comprehensive overview on various maximum power point tracking (MPPT) techniques, which have been recently designed, simulated and/or experimentally validated in the PV literature. The primary goal of each MPPT technique is to optimize the output of shaded/unshaded photovoltaic (PV) array under static and dynamic weather conditions. Though each MPPT technique has its own pros and cons, an optimized MPPT technique is characterized in many aspects like hardware and software simplicity, implementation, cost effectiveness, sensors required, popularity, accuracy and convergence speed. In this paper the rating of various MPPT methods has been done based on the benchmark P&O method. The rating criteria is separately calculated for the techniques that are capable to work in full-sun and partial shading conditions. A rule based table is set to evaluate the MPPT against the algorithm's complexity, hardware implementation, tracking speed, and steady state accuracy or detection of global maximum. Moreover, special consideration has been given to bio-inspired MPPT algorithms. The bio-inspired algorithms are compared side by side with their specific application in PV system. A tree diagram is also designed to see the emergence of partial shading algorithms over a period of time. The traits presented in this paper are novel and provide bottom-line for the researchers to select and implement an appropriate MPPT technique.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available