4.7 Article

Improved partial inerting MIE test method for combustible dusts and its CFD validation

Journal

PROCESS SAFETY AND ENVIRONMENTAL PROTECTION
Volume 122, Issue -, Pages 192-199

Publisher

INST CHEMICAL ENGINEERS
DOI: 10.1016/j.psep.2018.12.009

Keywords

Dust explosion; Partial inerting; Minimum ignition energy; Computational fluid dynamics

Funding

  1. Texas A&M High Performance Research Computing facility

Ask authors/readers for more resources

The Minimum Ignition Energy (MIE) is an important dust hazard parameter that guides the elimination of possible ignition sources in solids handling facilities. Partial inerting is a dust explosion mitigation technique implemented in industries, where the dust cloud MIE is increased, reducing the risk of an accidental explosion. Previous work has shown that purging the MIE apparatus Hartmann tube before testing is essential for obtaining accurate MIE values, but have not discussed the importance of the effective purge time required. Through experimentation and CFD modeling, this study has attempted to refine the existing MIE testing standard for partial inerting applications by introducing purge time as an essential parameter. In this study, oxygen sensor measurements were conducted to determine that the purge time for the MIKE3 apparatus should be > 40s. Additionally, an ANSYS Fluent CFD purging model was developed, which confirmed the experimentally determined purge time. Using this improved methodology, an accurate partial inerting data set was obtained for the combustible dusts Anthraquinone, Lycopodium clavatum and Calcium Stearate. (C) 2018 Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available