4.8 Article

Effects of fossil fuel and total anthropogenic emission removal on public health and climate

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1819989116

Keywords

air pollution; greenhouse gases; health impacts; climate change; hydrologic cycle

Ask authors/readers for more resources

Anthropogenic greenhouse gases and aerosols are associated with climate change and human health risks. We used a global model to estimate the climate and public health outcomes attributable to fossil fuel use, indicating the potential benefits of a phaseout. We show that it can avoid an excess mortality rate of 3.61 (2.96-4.21) million per year from outdoor air pollution worldwide. This could be up to 5.55 (4.52-6.52) million per year by additionally controlling nonfossil anthropogenic sources. Globally, fossil-fuel-related emissions account for about 65% of the excess mortality, and 70% of the climate cooling by anthropogenic aerosols. The chemical influence of air pollution on aeolian dust contributes to the aerosol cooling. Because aerosols affect the hydrologic cycle, removing the anthropogenic emissions in the model increases rainfall by 10-70% over densely populated regions in India and 10-30% over northern China, and by 10-40% over Central America, West Africa, and the droughtprone Sahel, thus contributing to water and food security. Since aerosols mask the anthropogenic rise in global temperature, removing fossil-fuel-generated particles liberates 0.51(+/- 0.03) degrees C and all pollution particles 0.73(+/- 0.03) degrees C warming, reaching around 2 degrees C over North America and Northeast Asia. The steep temperature increase from removing aerosols can be moderated to about 0.36(+/- 0.06) degrees C globally by the simultaneous reduction of tropospheric ozone and methane. We conclude that a rapid phaseout of fossil-fuel-related emissions and major reductions of other anthropogenic sources are needed to save millions of lives, restore aerosol-perturbed rainfall patterns, and limit global warming to 2 degrees C.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available