4.8 Article

Magnetoelastic hybrid excitations in CeAuAl3

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1819664116

Keywords

magneto-elastic coupling; f-electron materials; neutron spectroscopy; Kondo lattice materials; crystal electric field

Funding

  1. National Natural Science Foundation of China [11875238]
  2. Director Foundation of China Academy of Engineering Physics [YZ2015009]
  3. Czech Science Foundation [17-04925J]
  4. DFG [WI3320-3, TRR80]
  5. European Research Council [788031 ExQuiSid]

Ask authors/readers for more resources

Nearly a century of research has established the Born-Oppenheimer approximation as a cornerstone of condensed-matter systems, stating that the motion of the atomic nuclei and electrons may be treated separately. Interactions beyond the Born- Oppenheimer approximation are at the heart of magneto-elastic functionalities and instabilities. We report comprehensive neutron spectroscopy and ab initio phonon calculations of the coupling between phonons, CEF-split localized 4f electron states, and conduction electrons in the paramagnetic regime of CeAuAl3, an archetypal Kondo lattice compound. We identify two distinct magneto-elastic hybrid excitations that form even though all coupling constants are small. First, we find a CEF-phonon bound state reminiscent of the vibronic bound state (VBS) observed in other materials. However, in contrast to an abundance of optical phonons, so far believed to be essential for a VBS, the VBS in CeAuAl3 arises from a comparatively low density of states of acoustic phonons. Second, we find a pronounced anticrossing of the CEF excitations with acoustic phonons at zero magnetic field not observed before. Remarkably, both magneto-elastic excitations are well developed despite considerable damping of the CEFs that arises dominantly by the conduction electrons. Taking together the weak coupling with the simultaneous existence of a distinct VBS and anticrossing in the same material in the presence of damping suggests strongly that similarly well-developed magneto-elastic hybrid excitations must be abundant in a wide range of materials. In turn, our study of the excitation spectra of CeAuAl3 identifies a tractable point of reference in the search for magneto-elastic functionalities and instabilities.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available