4.8 Article

Role of forest regrowth in global carbon sink dynamics

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1810512116

Keywords

forest; carbon sink; regrowth; demography; disturbance

Funding

  1. European Union FP7 Grant LUC4C [603542]
  2. Helmholtz Association in its ATMO programme
  3. European Research Council under the European Union Horizon 2020 programme [758873]
  4. National Aeronautics and Space Administration Earth and Space Science Fellowship (2016-2019)
  5. Earth Systems and Climate Change Hub
  6. Australian Government's National Environmental Science Program
  7. SUMFOREST ERA-NET project FOREXCLIM

Ask authors/readers for more resources

Although the existence of a large carbon sink in terrestrial ecosystems is well-established, the drivers of this sink remain uncertain. It has been suggested that perturbations to forest demography caused by past land-use change, management, and natural disturbances may be causing a large component of current carbon uptake. Here we use a global compilation of forest age observations, combined with a terrestrial biosphere model with explicit modeling of forest regrowth, to partition the global forest carbon sink between old-growth and regrowth stands over the period 1981-2010. For 2001-2010 we find a carbon sink of 0.85 (0.66-0.96) Pg year(-1) located in intact old-growth forest, primarily in the moist tropics and boreal Siberia, and 1.30 (1.03-1.96) Pg year(-1) located in stands regrowing after past disturbance. Approaching half of the sink in regrowth stands would have occurred from demographic changes alone, in the absence of other environmental changes. These age-constrained results show consistency with those simulated using an ensemble of demographically-enabled terrestrial biosphere models following an independent reconstruction of historical land use and management. We estimate that forests will accumulate an additional 69 (44-131) Pg C in live biomass from changes in demography alone if natural disturbances, wood harvest, and reforestation continue at rates comparable to those during 1981-2010. Our results confirm that it is not possible to understand the current global terrestrial carbon sink without accounting for the sizeable sink due to forest demography. They also imply that a large portion of the current terrestrial carbon sink is strictly transient in nature.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available