4.8 Article

Nitrogen-fixing red alder trees tap rock-derived nutrients

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.1814782116

Keywords

nitrogen fixation; mineral weathering; forest; biogeochemistry; strontium isotopes

Funding

  1. National Science Foundation [DEB-1457650, EAR-1053470]

Ask authors/readers for more resources

Symbiotic nitrogen (N)-fixing trees supply significant N inputs to forest ecosystems, leading to increased soil fertility, forest growth, and carbon storage. Rapid growth and stoichiometric constraints of N fixers also create high demands for rock-derived nutrients such as phosphorus (P), while excess fixed N can generate acidity and accelerate leaching of rock-derived nutrients such as calcium (Ca). This ability of N-fixing trees to accelerate cycles of Ca, P, and other rock-derived nutrients has fostered speculation of a direct link between N fixation and mineral weathering in terrestrial ecosystems. However, field evidence that N-fixing trees have enhanced access to rock-derived nutrients is lacking. Here we use strontium (Sr) isotopes as a tracer of nutrient sources in a mixed-species temperate rainforest to showthat N-fixing trees access more rock-derived nutrients than nonfixing trees. The N-fixing tree red alder (Alnus rubra), on average, took up 8 to 18% more rock-derived Sr than five co-occurring nonfixing tree species, including two with high requirements for rock-derived nutrients. The increased access to rock-derived nutrients occurred despite spatial variation in community-wide Sr sources across the forest, and only N fixers had foliar Sr isotopes that differed significantly from soil exchangeable pools. We calculate that increased uptake of rock-derived nutrients by N-fixing alder requires a 64% increase in weathering supply of nutrients over nonfixing trees. These findings provide direct evidence that an N-fixing tree species can also accelerate nutrient inputs from rock weathering, thus increasing supplies of multiple nutrients that limit carbon uptake and storage in forest ecosystems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available