4.3 Article

Industrial Effluents Harbor a Unique Diversity of Fungal Community Structures as Revealed by High-throughput Sequencing Analysis

Journal

POLISH JOURNAL OF ENVIRONMENTAL STUDIES
Volume 28, Issue 4, Pages 2353-2362

Publisher

HARD
DOI: 10.15244/pjoes/90791

Keywords

fungi; biodiversity; high-throughput sequencing; industrial wastewater; pollution

Funding

  1. University of South Africa (UNISA)

Ask authors/readers for more resources

The actual extent of fungal diversity in different environmental media is still a subject of ongoing research. Little is currently known about the diversity of fungal populations in industrial streams. This study characterized the fungal diversity of different industrial effluents using a high-throughput sequencing approach. A total of 234617 quality filtered reads were obtained from the collected wastewater samples. Phylogenetic taxonomy revealed that resident fungal communities were classified as 6 phyla, 31 classes, 79 orders, 144 families, and 192 genera. Ascomycota and Basidiomycota were the most dominant phyla whose relative abundance ranged from 23.29% to 38.31%, and 17.34% to 33.51%, respectively. Recovered operational taxonomic units (OTUs) ranged from 292 (Dixon) to 427 (Capegate). The existence of some fungal genera identified in the industrial wastewaters correlated to physicochemical variables and had the potential to play important roles in organic decomposition, pollutant degradation, and xenobiotic transformation. Meanwhile, the occurrence of unclassified fungal sequences (22.5% to 33.09%) suggests that these effluents are a potential reservoir of as-yet uncharacterized fungal species.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available