4.7 Review

Application of genetics and biotechnology for improving medicinal plants

Journal

PLANTA
Volume 249, Issue 4, Pages CP5-+

Publisher

SPRINGER
DOI: 10.1007/s00425-019-03099-1

Keywords

Bio-product; Biotechnology; Genome editing; Metabolic engineering; Plant synthetic biology; Tissue culture

Categories

Ask authors/readers for more resources

Main conclusionPlant tissue culture has been used for conservation, micropropagation, and in planta overproduction of some pharma molecules of medicinal plants. New biotechnology-based breeding methods such as targeted genome editing methods are able to create custom-designed medicinal plants with different secondary metabolite profiles.For a long time, humans have used medicinal plants for therapeutic purposes and in food and other industries. Classical biotechnology techniques have been exploited in breeding medicinal plants. Now, it is time to apply faster biotechnology-based breeding methods (BBBMs) to these valuable plants. Assessment of the genetic diversity, conservation, proliferation, and overproduction are the main ways by which genetics and biotechnology can help to improve medicinal plants faster. Plant tissue culture (PTC) plays an important role as a platform to apply other BBBMs in medicinal plants. Agrobacterium-mediated gene transformation and artificial polyploidy induction are the main BBBMs that are directly dependent on PTC. Manageable regulation of endogens and/or transferred genes via engineered zinc-finger proteins or transcription activator-like effectors can help targeted manipulation of secondary metabolite pathways in medicinal plants. The next-generation sequencing techniques have great potential to study the genetic diversity of medicinal plants through restriction-site-associated DNA sequencing (RAD-seq) technique and also to identify the genes and enzymes that are involved in the biosynthetic pathway of secondary metabolites through precise transcriptome profiling (RNA-seq). The sequence-specific nucleases of transcription activator-like effector nucleases (TALENs), zinc-finger nucleases, and clustered regularly interspaced short palindromic repeats-associated (Cas) are the genome editing methods that can produce user-designed medicinal plants. These current targeted genome editing methods are able to manage plant synthetic biology and open new gates to medicinal plants to be introduced into appropriate industries.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available