4.8 Article

FT Modulates Genome-Wide DNA-Binding of the bZIP Transcription Factor FD

Journal

PLANT PHYSIOLOGY
Volume 180, Issue 1, Pages 367-380

Publisher

OXFORD UNIV PRESS INC
DOI: 10.1104/pp.18.01505

Keywords

-

Categories

Funding

  1. VINNOVA [Sonderforschungsbereich 1101, SFB1101/1-B04]
  2. Knut and Alice Wallenberg Foundation [2016-0025]
  3. Humboldt Foundation
  4. European Research Council under the European Union's Horizon 2020 Research and Innovation Programme (ERC) [679056]
  5. UK Biological and Biotechnology Research Council (BBSRC) [BB/P013511/1]
  6. European Research Council (ERC) [679056] Funding Source: European Research Council (ERC)

Ask authors/readers for more resources

The transition to flowering is a crucial step in the plant life cycle that is controlled by multiple endogenous and environmental cues, including hormones, sugars, temperature, and photoperiod. Permissive photoperiod induces the expression of FLOWERING LOCUS T (FT) in the phloem companion cells of leaves. The FT protein then acts as a florigen that is transported to the shoot apical meristem, where it physically interacts with the Basic Leucine Zipper Domain transcription factor FD and 14-3-3 proteins. However, despite the importance of FD in promoting flowering, its direct transcriptional targets are largely unknown. Here, we combined chromatin immunoprecipitation sequencing and RNA sequencing to identify targets of FD at the genome scale and assessed the contribution of FT to DNA binding. We further investigated the ability of FD to form protein complexes with FT and TERMINAL FLOWER1 through interaction with 14-3-3 proteins. Importantly, we observed direct binding of FD to targets involved in several aspects of plant development. These target genes were previously unknown to be directly related to the regulation of flowering time. Our results confirm FD as a central regulator of floral transition at the shoot meristem and provide evidence for crosstalk between the regulation of flowering and other signaling pathways, such as pathways involved in hormone signaling.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available