4.8 Article

Evolutionary dynamics of lincRNA transcription in nine citrus species

Journal

PLANT JOURNAL
Volume 98, Issue 5, Pages 912-927

Publisher

WILEY
DOI: 10.1111/tpj.14279

Keywords

long intergenic non-coding RNAs (lincRNAs); evolution; sweet orange (Citrus sinensis); miR166; fruit development

Categories

Funding

  1. National Key Research and Development Program of China [2018YFD1000101]
  2. National Natural Science Foundation of China [31872052, 31572105]
  3. Fundamental Research Funds for the Central Universities

Ask authors/readers for more resources

Long intergenic non-coding RNAs (lincRNAs) play important roles in various biological processes in plants. However, little information is known about the evolutionary characteristics of lincRNAs among closely related plant species. Here, we present a large-scale comparative study of lincRNA transcription patterns in nine citrus species. By strand-specific RNA-sequencing, we identified 18 075 lincRNAs (14 575 lincRNA loci) from 34 tissue samples. The results indicated that the evolution of lincRNA transcription is more rapid than that of mRNAs. In total, 82.8-97.6% of sweet orange (Citrus sinensis) lincRNA genes were shown to have homologous sequences in other citrus genomes. However, only 15.5-28.8% of these genes had transcribed homologous lincRNAs in these citrus species, presenting a strong contrast to the high conservation of mRNA transcription (81.6-84.7%). Moreover, primitive and modern citrus lincRNAs were preferentially expressed in reproductive and vegetative organs, respectively. Evolutionarily conserved lincRNAs showed higher expression levels and lower tissue specificity than species-specific lincRNAs. Notably, we observed a similar tissue expression pattern of homologous lincRNAs in sweet orange and pummelo (Citrus grandis), suggesting that these lincRNAs may be functionally conserved and selectively maintained. We also identified and validated a lincRNA with the highest expression in fruit that acts as an endogenous target mimic (eTM) of csi-miR166c, and two lincRNAs that act as a precursor and target of csi-miR166c, respectively. These lincRNAs together with csi-miR166c could form an eTM166-miR166c-targeted lincRNA regulatory network that possibly affects citrus fruit development.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available