4.7 Article

Favorable Bioactivity of the SDHI Fungicide Benzovindiflupyr Against Sclerotinia sclerotiorum Mycelial Growth, Sclerotial Production, and Myceliogenic and Carpogenic Germination of Sclerotia

Journal

PLANT DISEASE
Volume 103, Issue 7, Pages 1613-1620

Publisher

AMER PHYTOPATHOLOGICAL SOC
DOI: 10.1094/PDIS-05-18-0729-RE

Keywords

baseline; benzovindiflupyr; sclerotia; Sclerotinia sclerotiorum; succinate dehydrogenase inhibitor; translocation

Categories

Funding

  1. National Key R&D Program of China [2017YFD0200307]
  2. National Natural Science Foundation of China [31772203]

Ask authors/readers for more resources

Sclerotinia sclerotiorum, which can cause Sclerotinia stem rot, is a prevalent plant pathogen. This study aims to evaluate the application potential of benzovindiflupyr, a new generation of succinate dehydrogenase inhibitor (SDHI), against S. sclerotiorum. In our study, 181 isolates collected from different crops (including eggplant [n = 34], cucumber [n = 27], tomato [n = 29], pepper [n = 35], pumpkin [n = 32], and kidney bean [n = 25]) in China were used to establish baseline sensitivity to benzovindiflupyr. The frequency distribution of the 50% effective concentration (EC50) values of benzovindiflupyr was a unimodal curve, with mean EC50 values of 0.0260 +/- 0.011 mu g/ml, and no significant differences in mean EC50 existed among the various crops (P > 0.99). Benzovindiflupyr can effectively inhibit mycelial growth, sclerotial production, sclerotial shape, and myceliogenic and carpogenic germination of the sclerotia of S. sclerotiorum. In addition, benzovindiflupyr showed good systemic translocation in eggplant. Using benzovindiflupyr at 100 mu g/ml yielded efficacies of 71.3 and 80.5% for transverse activity and cross-layer activity, respectively, which were higher than those of acropetal and basipetal treatments (43.6 and 44.7%, respectively). Greenhouse experiments were then carried out at two experimental sites for verification. Applying benzovindiflupyr at 200 g a.i. ha(-1) significantly reduced the disease incidence and severity of Sclerotinia stem rot. Overall, the results demonstrated that benzovindiflupyr is a potential alternative product to control Sclerotinia stem rot.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available