4.7 Article

Ganomycin I from Ganoderma lucidum attenuates RANKL-mediated osteoclastogenesis by inhibiting MAPKs and NFATc1

Journal

PHYTOMEDICINE
Volume 55, Issue -, Pages 1-8

Publisher

ELSEVIER GMBH
DOI: 10.1016/j.phymed.2018.10.029

Keywords

Ganomycin I; Ganoderma lucidum; RANKL; Osteoclastogenesis; MAPKs; NFATc1

Funding

  1. National Research Foundation (NRF) of Korea [2018R1D1A1B07047187]
  2. Kangwon National University
  3. National Research Foundation of Korea [2018R1D1A1B07047187] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

Ask authors/readers for more resources

Background: Many bone-related diseases such as osteoporosis and rheumatoid arthritis are commonly associated with excessive activity of the osteoclast. Ganomycin I (GMI), a meroterpenoid isolated from Vietnamese mushroom Ganoderma lucidum, possesses a variety of beneficial effects on human health. However, its impact and underlying mechanism on osteoclastogenesis remain unclear. In the present study, we investigated the effect of GMI on RANKL-induced osteoclast formation in mouse BMMs and RAW264.7 cells. Methods: BMMs or RAW264.7 cells were treated with GMI followed by an evaluation of cell viability, RANKL-induced osteoclast differentiation, actin-ring formation, and resorption pits activity. Effects of GMI on RANKL-induced phosphorylation of MAPKs as well as the expression levels of NFATc1 and c-Fos were evaluated by Western blot analysis. Expression levels of osteoclast marker genes were evaluated by Western blot analysis and reverse transcription-qPCR. Results: GMI significantly inhibited RANKL-induced osteoclast differentiation by decreasing the number of osteoclasts, osteoclast actin-ring formation, and bone resorption in a dose-dependent manner without affecting cell viability. At molecular level, GMI inhibited the RANKL-induced phosphorylation of ERK, JNK, and p38 MAPKs, as well as the expression levels of c-Fos and NFATc1, which are known to be crucial transcription factors for osteoclast formation. In addition, GMI decreased expression levels of osteoclastogenesis specific marker genes including c-Src, CtsK, TRAP, MMP-9, OSCAR, and DC-STAMP in RANKL-stimulated BMMs. Conclusion: Our findings suggest that GMI can attenuate osteoclast formation by suppressing RANKL-mediated MAPKs and NFATc1 signaling pathways and the anti-osteoclastogenic activity of GMI may extend our understanding of molecular mechanisms underlying biological activities and pharmacological use of G. lucidum as a traditional anti-osteoporotic medicine.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available