4.7 Article

Quercetin alleviates high glucose-induced damage on human umbilical vein endothelial cells by promoting autophagy

Journal

PHYTOMEDICINE
Volume 56, Issue -, Pages 183-193

Publisher

ELSEVIER GMBH
DOI: 10.1016/j.phymed.2018.11.008

Keywords

Human umbilical vein endothelial cells; Quercetin; Diabetic condition; Autophagy status

Funding

  1. Vice Chancellor for Research of Tabriz University of Medical Sciences

Ask authors/readers for more resources

Background: Quercetin, a flavonoid antioxidant, has been found to exert therapeutic effects in diabetic condition. Autophagy represents a homeostatic cellular mechanism for the turnover of unfolds proteins and damaged organelles through a lysosome-dependent degradation manner. We speculated that quercetin could protect endothelial cells against high glucose-induced damage by promoting autophagic responses. Methods: HUVECs viability was evaluated by MTT method. Griess and TBARS assays were used to monitor the levels of NO and MDA, respectively. Intracellular ROS generation was determined in DCFDA-stained cells analyzed by flow cytometry. To investigate the role of quercetin in endothelial cell migratory behavior, we used a scratch test. The level of autophagy proteins LC3, Beclin-1 and P62 were measured by western blotting technique. Results: Our results showed that quercetin had the potential to increase cell survival after exposure to high glucose (P < 0.05). Total levels of oxidative stress markers were profoundly decreased and the activity of GSH was increased by quercetin (P < 0.05). High glucose suppressed HUVECs migration to the scratched area (P < 0.05). However, a significant stimulation in cell migration was observed after exposure to quercetin (P < 0.05). Based on data, autophagy was blocked at the late stage by high glucose concentration while quercetin enhanced autophagic response by reducing the P62 level coincided with the induction of Beclin-1 and LC3-II to LC3-I ratio (P < 0.05). All these beneficial effects were reversed by 3-methyladenine as an autophagy inhibitor. Conclusion: Together, our data suggest that quercetin could protect HUVECs from high glucose induced-damage possibly by activation of the autophagy response.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available