4.8 Article

Emergence of Active Nematic Behavior in Monolayers of Isotropic Cells

Journal

PHYSICAL REVIEW LETTERS
Volume 122, Issue 4, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.122.048004

Keywords

-

Funding

  1. Swiss National Science Foundation [P2EZP2_165261]
  2. Royal Commission for the Exhibition of 1851 Research Fellowship
  3. Swiss National Science Foundation (SNF) [P2EZP2_165261] Funding Source: Swiss National Science Foundation (SNF)

Ask authors/readers for more resources

There is now growing evidence of the emergence and biological functionality of liquid crystal features, including nematic order and topological defects, in cellular tissues. However, how such features that intrinsically rely on particle elongation emerge in monolayers of cells with isotropic shapes is an outstanding question. In this Letter, we present a minimal model of cellular monolayers based on cell deformation and force transmission at the cell-cell interface that explains the formation of topological defects and captures the flow-field and stress patterns around them. By including mechanical properties at the individual cell level, we further show that the instability that drives the formation of topological defects, and leads to active turbulence, emerges from a feedback between shape deformation and active driving. The model allows us to suggest new explanations for experimental observations in tissue mechanics, and to propose designs for future experiments.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available