4.4 Article

Size effects and magnetoelastic couplings: a link between Hall-Petch behaviour and coercive field in soft ferromagnetic metals

Journal

PHILOSOPHICAL MAGAZINE
Volume 99, Issue 11, Pages 1297-1326

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/14786435.2019.1580397

Keywords

Grain size; magnetic properties; deformation mechanisms; size effects; internal stresses; coercive field

Ask authors/readers for more resources

Size effects regarding Hall-Petch (HP) relation are studied in this work for cobalt, nickel and Fe-3wt.%Si (FeSi), from polycrystalline to multicrystalline states. The materials show a breakdown in HP plot for thickness (t) to grain size (d) ratio less than a critical value. This appears in the beginning of plasticity for cobalt and FeSi whereas a plastic strain threshold must be overcome for nickel. Measurements of the coercive field on strained samples are able to depict such modification for low t/d ratio. Values of the coercive field in the polycrystalline domain allow an estimation of the magnetocrystalline anisotropy energy, related to the grain volume fraction concerned by reversal mechanisms for magnetic domains. Multicrystalline samples of cobalt and FeSi becomes magnetically softer at the yield stress. This is linked to a delay of the maximum intergranular stress towards higher strains for FeSi. For cobalt, non-linear elasticity and strong basal texture modify the magnetoelastic effects in coarse grain samples. For nickel, size effect on the coercive field appears after a few per cent of plastic strain as for HP relationship. A mean internal stress can be captured by magnetic measurements on polycrystals, related to the intragranular part of the kinematic stress. The softening of the magnetic properties for strained nickel multicrystals is due to a competition between the apparition of dislocation cells, which increases the coercive field by mechanisms of magnetic domain wall pinning, and surface softening of multicrystals, which tends to decrease the value of H-c.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available