4.5 Article

Chlorogenic acid attenuates high-carbohydrate, high-fat diet-induced cardiovascular, liver, and metabolic changes in rats

Journal

NUTRITION RESEARCH
Volume 62, Issue -, Pages 78-88

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.nutres.2018.11.002

Keywords

Chlorogenic acid; Obesity; Metabolic syndrome; Cardiovascular disease; Coffee; High-carbohydrate, high-fat diet; Gut microbiota

Funding

  1. University of Southern Queensland Research and Innovation Division

Ask authors/readers for more resources

Chlorogenic acid as a constituent of coffee is consumed regularly in the human diet. Chlorogenic acid intake has been associated with decreased risk of cardiovascular disease and type 2 diabetes. We hypothesized that chlorogenic acid would improve cardiovascular, liver, and metabolic responses in a rat model of metabolic syndrome induced by a high-carbohydrate, high-fat diet. Male Wistar rats (8-9 weeks old, 335 +/- 2 g, n = 48) were divided into 4 groups and fed with corn starch diet (16 weeks); corn starch diet with chlorogenic acid in food for the last 8 weeks; high-carbohydrate, high-fat diet (16 weeks); or high-carbohydrate, high-fat diet with chlorogenic acid (similar to 100 mg/kg/d) in food for the last 8 weeks. In high-carbohydrate, high-fat diet-fed rats, chlorogenic acid reduced energy intake and food efficiency to reduce visceral fat, especially retroperitoneal fat, and abdominal circumference; reversed the elevated systolic blood pressure; and attenuated left ventricular diastolic stiffness with reduced collagen deposition and infiltration of inflammatory cells in the left ventricle. Chlorogenic acid decreased inflammation and fat deposition in the liver along with reduced plasma liver enzyme activities of obese rats but did not change the plasma lipid profile. Chlorogenic acid increased diversity of gut microbiota, which may improve overall metabolism in the body. Thus, chronic dietary chlorogenic acid attenuated diet-induced inflammation as well as cardiovascular, liver, and metabolic changes, suggesting that chlorogenic acid has potential for further clinical evaluation. (C) 2018 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available