4.6 Article

Determining factors, regulation system, and domestication of anthocyanin biosynthesis in rice leaves

Journal

NEW PHYTOLOGIST
Volume 223, Issue 2, Pages 705-721

Publisher

WILEY
DOI: 10.1111/nph.15807

Keywords

cyanidin-3-O-glucoside; Oryza sativa; OsC1; OsP1; OsRb; regulation system

Categories

Funding

  1. National Key RAMP
  2. D Program of China [2016YFD0100500]
  3. National Special Key Project for Transgenic Breeding [2016ZX08009002]

Ask authors/readers for more resources

Wild and cultivated rice show a significant difference in anthocyanin biosynthesis in the leaf. The regulation system of anthocyanin biosynthesis in rice leaf and the causal mechanism of the difference in this biosynthesis between wild and cultivated rice remain largely unknown. In this study, a genome-wide association study and transcriptome analysis were performed to identify the determinant factors and dissect the regulatory system for anthocyanin biosynthesis in rice leaves. OsC1, OsRb and OsDFR were identified as the determinants of anthocyanin biosynthesis in rice leaves. Artificial selection of certain null mutations of OsC1 and OsRb was the main causal mechanism underlying the loss of anthocyanin pigmentation in most cultivated rice. OsP1 and the MYB-bHLH-WD40 complexes regulate anthocyanin biosynthetic genes in rice leaves with partial functional overlap. OsP1 specifically activates upstream biosynthetic genes (OsCHS, OsCHI and OsF3 ' H) for anthocyanin biosynthesis, whereas the ternary MYB-bHLH-WD40 complex activates all anthocyanin biosynthetic genes including OsCHS, OsCHI, OsF3 ' H, OsF3H, OsDFR and OsANS. OsC1 and OsRb are tissue-specific regulators that do not influence anthocyanin biosynthesis in the pericarp. Our results reveal the determinant factors, regulatory system and domestication of anthocyanin biosynthesis in rice leaves, and show the potential of engineering anthocyanin biosynthesis in rice.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available