4.6 Article

Topological Devil's staircase in atomic two-leg ladders

Journal

NEW JOURNAL OF PHYSICS
Volume 21, Issue -, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/1367-2630/ab0e18

Keywords

fractional topological phase; two-leg ladder; strongly correlated; cold-atoms

Funding

  1. CINECA award under the ISCRA initiative
  2. ERC [758329]
  3. European Research Council (ERC) [758329] Funding Source: European Research Council (ERC)

Ask authors/readers for more resources

We show that a hierarchy of topological phases in one dimension-a topological Devil's staircase-can emerge at fractional filling fractions in interacting systems, whose single-particle band structure describes a topological or a crystalline topological insulator. Focusing on a specific example in the BDI class, we present a field-theoretical argument based on bosonization that indicates how the system, as a function of the filling fraction, hosts a series of density waves. Subsequently, based on a numerical investigation of the low-lying energy spectrum, Wilczek-Zee phases, and entanglement spectra, we show that they are symmetry protected topological phases. In sharp contrast to the non-interacting limit, these topological density waves do not follow the bulk-edge correspondence, as their edge modes are gapped. We then discuss how these results are immediately applicable to models in the AIII class, and to crystalline topological insulators protected by inversion symmetry. Our findings are immediately relevant to cold atom experiments with alkaline-earth atoms in optical lattices, where the band structure properties we exploit have been recently realized.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available