4.7 Article

Somatosensory system integrity explains differences in treatment response after stroke

Journal

NEUROLOGY
Volume 92, Issue 10, Pages E1098-E1108

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1212/WNL.0000000000007041

Keywords

-

Funding

  1. (NIH) [R01 HD062744, K24 HD074722, UL1 TR001414]

Ask authors/readers for more resources

Objective To test the hypothesis that, in the context of robotic therapy designed to enhance proprioceptive feedback via a Hebbian model, integrity of both somatosensory and motor systems would be important in understanding interparticipant differences in treatment-related motor gains. Methods In 30 patients with chronic stroke, behavioral performance, neural injury, and neural function were quantified for somatosensory and motor systems. Patients then received a 3-week robot-based therapy targeting finger movements with enhanced proprioceptive feedback. Results Hand function improved after treatment (Box and Blocks score increase of 2.8 blocks, p = 0.001) but with substantial variability: 9 patients showed improvement exceeding the minimal clinically important difference (6 blocks), while 8 patients (all of whom had >2-SD greater proprioception deficit compared to 25 healthy controls) showed no improvement. In terms of baseline behavioral assessments, a somatosensory measure (finger proprioception assessed robotically) best predicted treatment gains, outperforming all measures of motor behavior. When the neural basis underlying variability in treatment response was examined, somatosensory-related variables were again the strongest predictors. A multivariate model combining total sensory system injury and sensorimotor cortical connectivity (between ipsilesional primary motor and secondary somatosensory cortices) explained 56% of variance in treatment-induced hand functional gains (p = 0.002). Conclusions Measures related to the somatosensory network best explained interparticipant differences in treatment-related hand function gains. These results underscore the importance of baseline somatosensory integrity for improving hand function after stroke and provide insights useful for individualizing rehabilitation therapy. ClinicalTrials.gov identifier: NCT02048826.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available