4.7 Article

Bayesian QuickNAT: Model uncertainty in deep whole-brain segmentation for structure-wise quality control

Journal

NEUROIMAGE
Volume 195, Issue -, Pages 11-22

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.neuroimage.2019.03.042

Keywords

Brain segmentation; Quality control; Deep learning; Model uncertainty; Group analysis

Funding

  1. SAP SE
  2. Bavarian State Ministry of Education, Science and the Arts
  3. Alzheimer's Disease Neuroimaging Initiative (ADNI) (National Institutes of Health) [U01 AG024904]
  4. DOD ADNI (Department of Defense) [W81XWH-12-2-0012]
  5. National Institute on Aging
  6. National Institute of Biomedical Imaging and Bioengineering
  7. Alzheimer's Association
  8. Alzheimer's Drug Discovery Foundation
  9. Araclon Biotech
  10. BioClinica Inc.
  11. Biogen Idec Inc.
  12. Bristol-Myers Squibb Company
  13. Eisai Inc.
  14. Elan Pharmaceuticals, Inc.
  15. Eli Lilly and Company
  16. EuroImmun
  17. F. Hoffmann-La Roche Ltd
  18. Genentech, Inc.
  19. Fujirebio
  20. GE Healthcare
  21. IXICO Ltd.
  22. Janssen Alzheimer Immunotherapy Research & Development, LLC
  23. Johnson & Johnson Pharmaceutical Research & Development LLC
  24. Medpace, Inc
  25. Merck Co., Inc.
  26. Meso Scale Diagnostics, LLC
  27. NeuroRx Research
  28. Neurotrack Technologies
  29. Novartis Pharmaceuticals Corporation
  30. Pfizer Inc.
  31. Piramal Imaging
  32. Servier
  33. Synarc Inc.
  34. Takeda Pharmaceutical Company
  35. Canadian Institutes of Health Research

Ask authors/readers for more resources

We introduce Bayesian QuickNAT for the automated quality control of whole-brain segmentation on MRI T1 scans. Next to the Bayesian fully convolutional neural network, we also present inherent measures of segmentation uncertainty that allow for quality control per brain structure. For estimating model uncertainty, we follow a Bayesian approach, wherein, Monte Carlo (MC) samples from the posterior distribution are generated by keeping the dropout layers active at test time. Entropy over the MC samples provides a voxel-wise model uncertainty map, whereas expectation over the MC predictions provides the final segmentation. Next to voxel-wise uncertainty, we introduce four metrics to quantify structure-wise uncertainty in segmentation for quality control. We report experiments on four out-of-sample datasets comprising of diverse age range, pathology and imaging artifacts. The proposed structure-wise uncertainty metrics are highly correlated with the Dice score estimated with manual annotation and therefore present an inherent measure of segmentation quality. In particular, the intersection over union over all the MC samples is a suitable proxy for the Dice score. In addition to quality control at scan-level, we propose to incorporate the structure-wise uncertainty as a measure of confidence to do reliable group analysis on large data repositories. We envisage that the introduced uncertainty metrics would help assess the fidelity of automated deep learning based segmentation methods for large-scale population studies, as they enable automated quality control and group analyses in processing large data repositories.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available