4.5 Article

Modulation of miR-34a/SIRT1 signaling protects cochlear hair cells against oxidative stress and delays age-related hearing loss through coordinated regulation of mitophagy and mitochondrial biogenesis

Journal

NEUROBIOLOGY OF AGING
Volume 79, Issue -, Pages 30-42

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.neurobiolaging.2019.03.013

Keywords

Mitophagy; Mitochondrial biogenesis; Cochlea; Presbycusis; SIRT1; Oxidative stress

Funding

  1. National Natural Science Foundation of China [81570916, 81771018, 81873699]

Ask authors/readers for more resources

Mitophagy and mitochondrial biogenesis are 2 pathways that regulate mitochondrial content and metabolism maintaining cellular homeostasis. The imbalance between these opposing processes impairs mitochondrial function and is suggested to be the pathophysiological basis of a variety of neurodegenerative diseases and aging. Here we investigated the role of mitophagy and mitochondrial biogenesis in oxidative damage to the cochlear hair cells and age-related hearing loss. In cultured mouse House Ear Institute-Organ of Corti 1 hair cells, oxidative stress activated mitophagy but inhibited mitochondrial biogenesis and impaired mitochondrial function. Pharmacological inhibition of miR-34a/SIRT1 signaling enhanced mitophagy, mitochondrial biogenesis, and attenuated House Ear Institute-Organ of Corti 1 cell death induced by oxidative stress. In the cochlea of C57BL/6 mice, mitophagy and mitochondrial biogenesis were both upregulated during aging. Long-term supplementation with resveratrol, a SIRT1 activator, not only improved the balance between mitophagy and mitochondrial biogenesis but also significantly reduced age-related cochlear hair cell loss, spiral ganglion neuron loss, stria vascularis atrophy, and hearing threshold shifts in C57BL/6 mice. Moreover, SIRT1 overexpression or miR-34a deficiency both attenuated age-related cochlear hair cell loss and hearing loss in C57BL/6 mice. Our findings reveal that imbalance between mitophagy and mitochondrial biogenesis contributes to cochlea hair cell damage caused by oxidative stress and during aging. Coordinated regulation of these 2 processes by miR-34a/SIRT1 signaling might serve as a promising approach for the treatment of age-related cochlear degeneration and hearing loss. (C) 2019 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available