4.8 Article

Side chain determinants of biopolymer function during selection and replication

Journal

NATURE CHEMICAL BIOLOGY
Volume 15, Issue 4, Pages 419-+

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/s41589-019-0229-2

Keywords

-

Funding

  1. DARPA [N66001-14-2-4053]
  2. NIH [R35 GM118062]
  3. Howard Hughes Medical Institute
  4. Y. Kishi Graduate Prize in Chemistry and Chemical Biology - Eisai Corporation

Ask authors/readers for more resources

The chemical functionalities within biopolymers determine their physical properties and biological activities. The relationship between the side chains available to a biopolymer population and the potential functions of the resulting polymers, however, has proven difficult to study experimentally. Using seven sets of chemically diverse charged, polar, and nonpolar side chains, we performed cycles of artificial translation, in vitro selections for binding to either PCSK9 or IL-6 protein, and replication on libraries of random side chain-functionalized nucleic acid polymers. Polymer sequence convergence, bulk population target binding, affinity of individual polymers, and head-to-head competition among post-selection libraries collectively indicate that polymer libraries with nonpolar side chains outperformed libraries lacking these side chains. The presence of nonpolar groups, resembling functionality existing in proteins but missing from natural nucleic acids, thus may be strong determinants of binding activity. This factor may contribute to the apparent evolutionary advantage of proteins over their nucleic acid precursors for some molecular recognition tasks.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available