4.8 Article

Deep electrical imaging of the ultraslow-spreading Mohns Ridge

Journal

NATURE
Volume 567, Issue 7748, Pages 379-+

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/s41586-019-1010-0

Keywords

-

Funding

  1. Faculty of Engineering, Department of Geoscience and Petroleum, NTNU Oceans
  2. ROSE consortium
  3. Norwegian Research Council [228400]
  4. Geophysics group at the Norwegian University of Science and Technology (NTNU)

Ask authors/readers for more resources

More than a third of mid-ocean ridges have a spreading rate of less than 20 millimetres a year(1). The lack of deep imaging data means that factors controlling melting and mantle upwelling(2,3), the depth to the lithosphere-asthenosphere boundary (LAB)(4,5), crustal thickness(6-9) and hydrothermal venting are not well understood for ultraslow-spreading ridges(10,11). Modern electromagnetic data have greatly improved our understanding of fast-spreading ridges(12,13), but have not been available for the ultraslow-spreading ridges. Here we present a detailed 120-kilometre-deep electromagnetic joint inversion model for the ultraslow-spreading Mohns Ridge, combining controlled source electromagnetic and magnetotelluric data. Inversion images show mantle upwelling focused along a narrow, oblique and strongly asymmetric zone coinciding with asymmetric surface uplift. Although the upwelling pattern shows several of the characteristics of a dynamic system(3,12-14), it probably reflects passive upwelling controlled by slow and asymmetric plate movements instead. Upwelling asthenosphere and melt can be traced to the inferred depth of the Mohorovicic discontinuity and are enveloped by the resistivity (100 ohm metres) contour denoted the electrical LAB (eLAB). The eLAB may represent a rheological boundary defined by a minimum melt content. We also find that neither the melt-suppression model(7) nor the inhibited-migration model(15), which explain the correlation between spreading rate and crustal thickness(6,16-19), can explain the thin crust below the ridge. A model in which crustal thickness is directly controlled by the melt-producing rock volumes created by the separating plates is more likely. Active melt emplacement into oceanic crust about three kilometres thick culminates in an inferred crustal magma chamber draped by fluid convection cells emanating at the Loki's Castle hydrothermal black smoker field. Fluid convection extends for long lateral distances, exploiting high porosity at mid-crustal levels. The magnitude and long-lived nature of such plumbing systems could promote venting at ultraslow-spreading ridges.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available