4.8 Article

Development of a Method for the Determination of Acyl-CoA Compounds by Liquid Chromatography Mass Spectrometry to Probe the Metabolism of Fatty Acids

Journal

ANALYTICAL CHEMISTRY
Volume 89, Issue 1, Pages 813-821

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.analchem.6b03623

Keywords

-

Funding

  1. NIH [R01CA172495]
  2. DOD [W81XWH-15-1-0507]

Ask authors/readers for more resources

Acyl-Coenzyme As (acyl-CoAs) are a group of activated fatty acid molecules participating in multiple cellular processes including lipid synthesis, oxidative metabolism of fatty acids to produce ATP, transcriptional regulation, and protein post-translational modification. Quantification of cellular acyl-CoAs is challenging due to their instability in aqueous solutions and lack of blank matrices. Here we demonstrate an LC-MS/MS analytical method which allows for absolute quantitation with broad coverage of cellular acyl-CoAs. This assay was applied to profile endogenous acyl-CoAs under the challenge of a variety of dietary fatty acids in prostate and hepatic cells. Additionally, this approach allowed for detection of multiple fatty acid metabolic processes including the biogenesis of acyl-CoAs, and their elongation, degradation, and desaturation. Hierarchical clustering in the remodeling of acyl-CoA profiles revealed a fatty-acid-specific pattern across all tested cell lines, which provides a valuable reference for making predictions in other cell models. Individual acyl-CoAs were identified which were altered differentially by exogenous fatty acids in divergent tumorigenicity states of cells. These findings demonstrate the power of acyl-CoA profiling toward understanding the mechanisms for the progression of tumors or other diseases in response to fatty acids.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available