4.8 Article

Digital Microfluidics for Immunoprecipitation

Journal

ANALYTICAL CHEMISTRY
Volume 88, Issue 20, Pages 10223-10230

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.analchem.6b02915

Keywords

-

Funding

  1. SCIEX
  2. Natural Sciences and Engineering Research Council of Canada (NSERC) (CREATE MS-ESE training program)

Ask authors/readers for more resources

Immunoprecipitation (IP) is a common method for isolating a targeted protein from a complex sample such as blood, serum, or cell lysate. In particular, IP is often used as the primary means of target purification for the analysis by mass spectrometry of novel biologically derived pharmaceuticals, with particular utility for the identification of molecules bound to a protein target. Unfortunately, IP is a labor-intensive technique, is difficult to perform in parallel, and has limited options for automation. Furthermore, the technique is typically limited to large sample volumes, making the application of IP cleanup to precious samples nearly impossible. In recognition of these challenges, we introduce a method for performing microscale IP using magnetic particles and digital microfluidics (DMF-IP). The new method allows for 80% recovery of model proteins from approximately microliter volumes of serum in a sample-to-answer run time of approximately 25 min. Uniquely, analytes are eluted from these small samples in a format compatible with direct analysis by mass spectrometry. To extend the technique to be useful for large samples, we also developed a macro-to-microscale interface called preconcentration using liquid intake by paper (P-CLIP). This technique allows for efficient analysis of samples >100x larger than are typically processed on microfluidic devices. As described herein, DMF-IP and P-CLIP-DMF-IP are rapid, automated, and multiplexed methods that have the potential to reduce the time and effort required for IP sample preparations with applications in the fields of pharmacy, biomarker discovery, and protein biology.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available