4.8 Article

Dependence of interface energetics and kinetics on catalyst loading in a photoelectrochemical system

Journal

NANO RESEARCH
Volume 12, Issue 9, Pages 2378-2384

Publisher

TSINGHUA UNIV PRESS
DOI: 10.1007/s12274-019-2346-3

Keywords

photoelectrochemistry; water splitting; Si; hydrogen evolution catalyst; nanowires

Funding

  1. HydroGEN Advanced Water Splitting Materials Consortium
  2. Energy Materials Network under the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Fuel Cell Technologies Office [DE-EE0008086]

Ask authors/readers for more resources

Solar hydrogen production by the photoelectrochemical method promises a means to store solar energy. While it is generally understood that the process is highly sensitive to the nature of the interface between the semiconductor and the electrolyte, a detailed understanding of this interface is still missing. For instance, few prior studies have established a clear relationship between the interface energetics and the catalyst loading amount. Here we aim to study this relationship on a prototypical Si-based photoelectrochemical system. Two types of interfaces were examined, one with GaN nanowires as a protection layer and one without. It was found that when GaN was present, higher Pt loading (> 0.1 mu g/cm(2)) led to not only better water reduction (and, hence, hydrogen evolution) kinetics but also more favorable interface energetics for greater photovoltages. In the absence of the protection layer, by stark contrast, increased Pt loading exhibited no measurable influence on the interface energetics, and the main difference was observed only in the hydrogen evolution kinetics. The study sheds new light on the importance of interface engineering for further improvement of photoelectrochemical systems, especially concerning the role of catalysts and protection layers.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available