4.8 Article

Rayleigh-Instability-Induced Bismuth Nanorod@Nitrogen-Doped Carbon Nanotubes as A Long Cycling and High Rate Anode for Sodium-Ion Batteries

Journal

NANO LETTERS
Volume 19, Issue 3, Pages 1998-2004

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.nanolett.8b05189

Keywords

Rayleigh instability; bismuth anode; nanotube; sodium-ion batteries

Funding

  1. Research Project from Shanxi Scholarship Council of China [2015-034]
  2. Natural Science Foundation of Shanxi Province of China [201701D221077]
  3. Australian Research Council (ARC) [DP160102627, LP160100273]
  4. Welch Foundation [F-1861]
  5. Alfred P. Sloan Research Fellowship
  6. Camille Dreyfus Teacher-Scholar Award

Ask authors/readers for more resources

Sodium-ion battery (SIB) as one of the most promising large-scale energy storage devices has drawn great attention in recent years. However, the development of SIBs is limited by the lacking of proper anodes with long cycling lifespans and large reversible capacities. Here we present rational synthesis of Rayleigh-instability-induced bismuth nanorods encapsulated in N-doped carbon nanotubes (Bi@N-C) using Bi2S3 nanobelts as the template for high-performance SIB. The Bi@N-C electrode delivers superior sodium storage performance in half cells, including a high specific capacity (410 mA h g(-1) at 50 mA g(-1)), long cycling lifespan (1000 cycles), and superior rate capability (368 mA h g(-1) at 2 A g(-1)). When coupled with homemade Na3V2(PO4)(3)/C in full cells, this electrode also exhibits excellent performances with high power density of 1190 W kg(-1) and energy density of 119 Wh kg(total)(-1). The exceptional performance of Bi@N-C is ascribed to the unique nanorod@nanotube structure, which can accommodate volume expansion of Bi during cycling and stabilize the solid electrolyte interphase layer and improve the electronic conductivity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available