4.6 Article

A modified image selective encryption-compression technique based on 3D chaotic maps and arithmetic coding

Journal

MULTIMEDIA TOOLS AND APPLICATIONS
Volume 78, Issue 14, Pages 19229-19252

Publisher

SPRINGER
DOI: 10.1007/s11042-019-7256-6

Keywords

Cryptography; Joint compression encryption; Chaotic maps; Contourlet transform; Thresholding; Arithmetic coding

Ask authors/readers for more resources

The advances in digital image processing and communications have created a great demand for real-time secure image transmission over the networks. However, the development of effective, fast and secure dependent image compression encryption systems are still a research problem as the intrinsic features of images such as bulk data capacity and high correlation among pixels hinds the use of the traditional joint encryption compression methods. A new approach is suggested in this paper for partial image encryption compression that adopts chaotic 3D cat map to de-correlate relations among pixels in conjunction with an adaptive thresholding technique that is utilized as a lossy compression technique instead of using complex quantization techniques and also as a substitution technique to increase the security of the cipher image. The proposed scheme is based on employing both of lossless compression with encryption on the most significant part of the image after contourlet transform. However the least significant parts are lossy compressed by employing a simple thresholding rule and arithmetic coding to render the image totally unrecognizable. Due to the weakness of 3D cat map to chosen plain text attack, the suggested scheme incorporates a mechanism to generate random key depending on the contents of the image (context key). Several experiments were done on benchmark images to insure the validity of the proposed technique. The compression analysis and security outcomes indicate that the suggested technique is an efficacious and safe for real time image's applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available