4.6 Review

An Overview of Significant Achievements in Ruthenium-Based Molecular Water Oxidation Catalysis

Journal

MOLECULES
Volume 24, Issue 3, Pages -

Publisher

MDPI
DOI: 10.3390/molecules24030494

Keywords

ruthenium; water oxidation; catalysis

Funding

  1. U.S. U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0018310]
  2. U.S. Department of Energy (DOE) [DE-SC0018310] Funding Source: U.S. Department of Energy (DOE)

Ask authors/readers for more resources

Fossil fuels (coal, oil, natural gas) are becoming increasingly disfavored as long-term energy options due to concerns of scarcity and environmental consequences (e.g., release of anthropogenic CO2). Hydrogen gas, on the other hand, has gained popularity as a clean-burning fuel because the only byproduct from its reaction with O-2 is H2O. In recent decades, hydrogen derived from water splitting has been a topic of extensive research. The bottleneck of the water splitting reaction is the difficult water oxidation step (2H(2)O -> O-2 + 4H(+) + 4e(-)), which requires an effective and robust catalyst to overcome its high kinetic barrier. Research in water oxidation by molecular ruthenium catalysts enjoys a rich history spanning nearly 40 years. As the diversity of novel ligands continues to widen, the relationship between ligand geometry or electronics, and catalyst activity is undoubtedly becoming clearer. The present review highlights, in the authors' opinion, some of the most impactful discoveries in the field and explores the evolution of ligand design that has led to the current state of the art.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available