4.5 Article

Homologs of Caenorhabditis elegans Chemosensory Genes Have Roles in Behavior and Chemotaxis in the Root-Knot Nematode Meloidogyne incognita

Journal

MOLECULAR PLANT-MICROBE INTERACTIONS
Volume 32, Issue 7, Pages 876-887

Publisher

AMER PHYTOPATHOLOGICAL SOC
DOI: 10.1094/MPMI-08-18-0226-R

Keywords

nematode-plant interactions

Funding

  1. Department of Biotechnology, Ministry of Science and Technology [BT/PR5908/AGR/36/727/2012]

Ask authors/readers for more resources

Nematode chemosensation is a vital component of their host-seeking behavior. The globally important phytonematode Meloidogyne incognita perceives and responds (via sensory organs such as amphids and phasmids) differentially to various chemical cues emanating from the rhizosphere during the course of host finding. However, compared with the free-living worm Caenorhabditis elegans, the molecular intricacies behind the plant nematode chemotaxis are a yet-unexploited territory. In the present study, four putative chemosensory genes of M. incognita, namely, Mi-odr-1, Mi-odr-3, Mi-tax-2, and Mi-tax-4 were molecularly characterized. Mi-odr-1 mRNA was found to be expressed in the cell bodies of amphidial neurons and phasmids of M. incognita. Mi-odr-1, Mi-odr-3, Mi-tax-2, and Mi-tax-4 transcripts were highly expressed in early life stages of M. incognita, consistent with a role of these genes in host recognition. Functional characterization of Mi-odr-1, Mi-odr-3, Mi-tax-2, and Mi-tax-4 via RNA interference revealed behavioral defects in M. incognita and perturbed attraction to host roots in Pluronic gel medium. Knockdown of Mi-odr-1, Mi-odr-3, Mi-tax-2, and Mi-tax-4 resulted in defective chemotaxis of M. incognita to various volatile compounds (alcohol, ketone, aromatic compound, ester, thiazole, pyrazine), nonvolatiles of plant origin (carbohydrate, phytohormone, organic acid, amino acid, phenolic), and host root exudates in an agar-Pluronic gel-based assay plate. In addition, ascaroside-mediated signaling was impeded by downregulation of chemosensory genes. This new information that behavioral response in M. incognita is modulated by specific olfactory genes can be extended to understand chemotaxis in other nematodes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available