4.3 Article

Aging alters signaling properties in the mouse spinal dorsal horn

Journal

MOLECULAR PAIN
Volume 15, Issue -, Pages -

Publisher

SAGE PUBLICATIONS INC
DOI: 10.1177/1744806919839860

Keywords

Pain; spinal cord; dorsal horn; aging; patch clamp; synaptic transmission; action potential

Categories

Funding

  1. National Health and Medical Research Council of Australia [631000, 1043933, 1067146]
  2. Hunter Medical Research Institute
  3. National Health and Medical Research Council of Australia [1067146] Funding Source: NHMRC

Ask authors/readers for more resources

A well-recognized relationship exists between aging and increased susceptibility to chronic pain conditions, underpinning the view that pain signaling pathways differ in aged individuals. Yet despite the higher prevalence of altered pain states among the elderly, the majority of preclinical work studying mechanisms of aberrant sensory processing are conducted in juvenile or young adult animals. This mismatch is especially true for electrophysiological studies where patch clamp recordings from aged tissue are generally viewed as particularly challenging. In this study, we have undertaken an electrophysiological characterization of spinal dorsal horn neurons in young adult (3-4 months) and aged (28-32 months) mice. We show that patch clamp data can be routinely acquired in spinal cord slices prepared from aged animals and that the excitability properties of aged dorsal horn neurons differ from recordings in tissue prepared from young animals. Specifically, aged dorsal horn neurons more readily exhibit repetitive action potential discharge, indicative of a more excitable phenotype. This observation was accompanied by a decrease in the amplitude and charge of spontaneous excitatory synaptic input to dorsal horn neurons and an increase in the contribution of GABAergic signaling to spontaneous inhibitory synaptic input in aged recordings. While the functional significance of these altered circuit properties remains to be determined, future work should seek to assess whether such features may render the aged dorsal horn more susceptible to aberrant injury or disease-induced signaling and contribute to increased pain in the elderly.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available