4.5 Article

Calcitonin gene-related peptide regulates FOSL2 expression and cell proliferation of BMSCs via mmu_circRNA_003795

Journal

MOLECULAR MEDICINE REPORTS
Volume 19, Issue 5, Pages 3732-3742

Publisher

SPANDIDOS PUBL LTD
DOI: 10.3892/mmr.2019.10038

Keywords

mmu_circRNA_003795; calcitonin gene-related peptide; bone marrow mesenchymal stem cells

Funding

  1. Science & Technology Bureau of Guangdong Province [2017A050501041]
  2. Health Department of Guangdong Province [B2015089]

Ask authors/readers for more resources

Circular RNAs (circRNAs) are a class of non-coding RNAs that may have important regulatory potency in various biological processes. However, the role of circRNAs and their potential functions in bone marrow mesenchymal stem cells of mice (BMSCs) are still ambiguous. The current study aims to examine the expression of circRNAs and to investigate their effects on FOS like 2 AP-1 transcription factor subunit (FOSL2) expression following stimulation of BMSCs with calcitonin gene-related peptide (CGRP). RNA generated from BMSCs stimulated with or without CGRP was used in a microarray to detect expression of circRNAs. There were 58 significantly differentially expressed circRNAs following CGRP treatment, with 44 circRNAs downregulated and 14 upregulated. Bioinformatics analysis and regulatory networks were used to identify the potential interactions between circRNAs and microRNAs (miRs). mmu_circRNA_003795 was significantly increased in the CGRP-stimulated BMSCs compared with the blank control. Silencing of mmu_circRNA_003795, significantly increased the expression of mmu_miR-504-3p, whereas FOSL2 expression and cell proliferation were decreased. Furthermore, silencing of mmu_mir-504-3p using an miR inhibitor led to increased FOSL2 expression. Additionally, silencing of mmu_circRNA_003795 using small interfering RNA induced marked alterations in the cell cycle of BMSCs. The results demonstrated that mmu_circRNA_003795 can indirectly regulate FOSL2 expression via sponging of miR-504-3p, resulting in alterations in BMSC proliferation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available