4.7 Article

Circular RNA circNRIP1 acts as a microRNA-149-5p sponge to promote gastric cancer progression via the AKT1/mTOR pathway

Journal

MOLECULAR CANCER
Volume 18, Issue -, Pages -

Publisher

BMC
DOI: 10.1186/s12943-018-0935-5

Keywords

Gastric cancer; circRNA; miRNA; ceRNA; AKT1; Organoid; PDX model

Funding

  1. National Natural Science Foundation of China [81572362]
  2. National Natural Science Foundation Project of International Cooperation (NSFC-NIH) [81361120398]
  3. Primary Research & Development Plan of Jiangsu Province [BE2016786]
  4. Program for Development of Innovative Research Team in the First Affiliated Hospital of NJMU
  5. Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) [JX10231801]
  6. 333 Project of Jiangsu Province [BRA2015474]
  7. Jiangsu Key Medical Discipline (General Surgery) [ZDXKA2016005]
  8. Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University

Ask authors/readers for more resources

BackgroundCircRNA has emerged as a new non-coding RNA that plays crucial roles in tumour initiation and development. MiRNA sponge' is the most reported role played by circRNAs in many tumours. The AKT/mTOR axis is a classic signalling pathway in cancers that sustains energy homeostasis through energy production activities, such as the Warburg effect, and blocks catabolic activities, such as autophagy. Additionally, the AKT/mTOR axis exerts a positive effect on EMT, which promotes tumour metastasis.MethodsWe detected higher circNRIP1 expression in gastric cancer by performing RNA-seq analysis. We verified the tumour promotor role of circNRIP1 in gastric cancer cells through a series of biological function assays. We then used a pull-down assay and dual-luciferase reporter assay to identify the downstream miR-149-5p of circNRIP1. Western blot analysis and immunofluorescence assays were performed to demonstrate that the circNRIP1-miR-149-5p-AKT1/mTOR axis is responsible for the altered metabolism in GC cells and promotes GC development. We then adopted a co-culture system to trace circNRIP1 transmission via exosomal communication and RIP experiments to determine that quaking regulates circNRIP1 expression. Finally, we confirmed the tumour suppressor role of microRNA-133a-3p in vivo in PDX mouse models.ResultsWe discovered that knockdown of circNRIP1 successfully blocked proliferation, migration, invasion and the expression level of AKT1 in GC cells. MiR-149-5p inhibition phenocopied the overexpression of circNRIP1 in GC cells, and overexpression of miR-149-5p blocked the malignant behaviours of circNRIP1. Moreover, it was proven that circNRIP1 can be transmitted by exosomal communication between GC cells, and exosomal circNRIP1 promoted tumour metastasis in vivo. We also demonstrated that quaking can promote circNRIP1 transcription. In the final step, the tumour promotor role of circNRIP1 was verified in PDX models.ConclusionsWe proved that circNRIP1 sponges miR-149-5p to affect the expression level of AKT1 and eventually acts as a tumour promotor in GC.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available