4.7 Article

Surface coating and matrix effect on the electrophoretic mobility of gold nanoparticles: a capillary electrophoresis-inductively coupled plasma mass spectrometry study

Journal

ANALYTICAL AND BIOANALYTICAL CHEMISTRY
Volume 409, Issue 4, Pages 979-988

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s00216-016-0012-0

Keywords

Capillary electrophoresis; Gold nanoparticles; Surface coating; Matrix effect

Ask authors/readers for more resources

Capillary electrophoresis (CE) is considered as a versatile technique in the size-based separation and speciation of nanomaterials. The electrophoretic mobility is determined by charge and size of an analyte which are affected by the surface composition of nanomaterials. Size-dependent differential electrophoretic mobility is used as a mechanism for size-based separation of nanoparticles. Understanding the effect of surface chemistry on the electrophoretic mobility of nanomaterials in CE is critical in obtaining accurate results in retention-based size calculation. A suite of gold nanoparticles (NPs) varied in sizes with different coatings, including citric acid (CA), lipoic acid (LA), tannic acid (TA), polyvinylpyrrolidone (PVP), polyethylene glycol (PEG), branched polyethyleneimine (BPEI), and bovine serum albumin (BSA), were selected to evaluate their impact to the migration pattern of gold NPs. Additionally, surface-coated gold NPs dispersed in Suwannee River humic acid (SRHA) solution and fetal bovine serum (FBS) were used to investigate the matrix effect. It was found that the correlation between NP size and relative electrophoretic mobility is highly dependent on the capping agents. The matrix component in the SRHA solution only exhibited limited influence to the migration of NPs while electrophoretic behaviors were drastically altered in the presence of FBS matrix.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available