4.5 Article

Acoustic waveguide filters made up of rigid stacked materials with elastic joints

Journal

MECCANICA
Volume 54, Issue 13, Pages 2039-2052

Publisher

SPRINGER
DOI: 10.1007/s11012-019-00959-8

Keywords

Acoustic filters; Blocky materials; Elastic interfaces; Continualization; Dispersive waves; Pass and stop bands

Categories

Ask authors/readers for more resources

The acoustic dispersion properties of monodimensional waveguide filters can be assessed by means of the simple prototypical mechanical system made of an infinite stack of periodic massive blocks, connected to each other by elastic joints. The linear undamped dynamics of the periodic cell is governed by a two degree-of-freedom Lagrangian model. The eigenproblem governing the free propagation of shear and moment waves is solved analytically and the two dispersion relations are obtained in a suited closed form fashion. Therefore, the pass and stop bandwidths are conveniently determined in the minimal space of the independent mechanical parameters. Stop bands in the ultra-low frequency range are achieved by coupling the stacked material with an elastic half-space modelled as a Winkler support. A convenient fine approximation of the dispersion relations is pursued by formulating homogenised micropolar continuum models. An enhanced continualization approach, employing a proper Maclaurin approximation of pseudo-differential operators, is adopted to successfully approximate the acoustic and optical branches of the dispersion spectrum of the Lagrangian models, both in the absence and in the presence of the elastic support.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available