4.7 Article

Effects of multi-walled carbon nanotubes on the electrogenerated chemiluminescence and fluorescence of CdTe quantum dots

Journal

ANALYTICAL AND BIOANALYTICAL CHEMISTRY
Volume 408, Issue 25, Pages 7049-7057

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s00216-016-9573-1

Keywords

Electrogenerated chemiluminescence (ECL); Carbon nanotubes; CdTe quantum dots; Dynamic quenching; ECL coreactant

Funding

  1. National Science Foundation via an NSF CAREER award [CHE 0955878]
  2. National Natural Science Foundation of China [21475006]

Ask authors/readers for more resources

Effects of multi-walled carbon nanotubes (CNTs) that were immobilized on glassy carbon electrode (GCE) on the electrogenerated chemiluminescence (ECL) of CdTe quantum dots (QDs) using tri-n-propylamine (TPrA) and 2-(dibutylamino)ethanol (DBAE) as the anodic coreactant are reported. Depending on the solution concentration of coreactant and QDs, the surface-confined CNTs could either quench or enhance the ECL intensity. Lowering the solution concentration of QDs was found to be beneficial for enhancing ECL. A V-shaped profile of ECL intensity ratio (at CNTs over bare GCE) versus coreactant concentration suggested that either low or high concentrations of coreactant were needed for effective ECL generation. The ECL quenching by CNTs was believed to follow the typical dynamic quenching mechanism, which was confirmed by fluorescent data that provided a Stern-Volmer and an estimated quenching constant of 11.7 g/L and 1.2 x 10(9) L/gaEuro cent s, respectively, for the excited state CdTe* quenching by CNTs in solution. Furthermore, the ECL performance at CNTs was also affected by the type of the coreactant used, where up to 30 times enhancement in ECL was observed from the CdTe/DBAE system under the given experimental conditions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available