4.6 Review

Photocatalytic oxidative desulfurization and denitrogenation of fuels over sodium doped graphitic carbon nitride nanosheets under visible light irradiation

Journal

MATERIALS CHEMISTRY AND PHYSICS
Volume 226, Issue -, Pages 34-43

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.matchemphys.2019.01.011

Keywords

Graphitic carbon nitride; Sodium doping; Photocatalytic oxidation; Pyridine; Thiophene

Funding

  1. Fundamental Research Funds for the Central Universities [2572017CB31]
  2. China Postdoctoral Science Foundation [2016M601403]
  3. Natural Science Foundation of Heilongjiang Province [B2017002]
  4. National Natural Science Foundation of China [31400294]

Ask authors/readers for more resources

A cost-efficient photocatalytic oxidative denitrogenation and desulfurization system for fuels under visible light was developed on the basis of Na doped g-C3N4 nanosheets catalyst. The process adopted molecular O-2 as oxidant to substitute for the expensive H2O2, and it adapted to the removal of small molecules of pyridine and thiophene. Na doped g-C3N4 nanosheets were obtained via a simple mixed-calcination pathway using NaCl as Na source. The structural, photophysical and chemical properties of the photocatalysts were characterized and compared to those of the original g-C3N4. It was verified that Na was successfully doped in the g-C3N4 lattice in a uniform chemical state. Moderate amount of Na doped in g-C3N4 generated the highly dispersed and porous nanosheets, which further improved the surface energy and reduce the recombination rate of electron-hole pairs. Na doped g-C3N4 exhibited enhanced performance simultaneously in the photocatalytic oxidative denitrogenation and desulfurization. The optimal catalyst obtained considerable removal efficiency for pyridine and thiophene, depending on its improved structural and photochemical properties by Na doping. A proposed mechanism revealed that the holes acted as the major active species for the denitrogenation and desulfurization, while the superoxide radicals originating from the combination of electron and O-2 gave a promotion effect.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available