4.7 Article

Effects of maternal bisphenol A on behavior, sex steroid and thyroid hormones levels in the adult rat offspring

Journal

LIFE SCIENCES
Volume 218, Issue -, Pages 253-264

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.lfs.2018.12.039

Keywords

Pregnancy; Lactation; Metabolic programming; Bisphenol A

Funding

  1. Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq)
  2. Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES)
  3. Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro (FAPERJ)

Ask authors/readers for more resources

Aims: Bisphenol A (BPA), an endocrine disruptor used in industrial applications, has been detected in both placenta and milk. We studied the effects of BPA exposure during pregnancy and lactation on body composition, palatable food intake, biochemical, hormonal and behavioral profiles of young and adult Wistar rat offspring. Main methods: Female rats were divided into: control, BPA10 (10 mu g/kg/day) and BPA50 (50 mu g/kg/day). BPA was administered by gavage to dams from gestation until the end of lactation. Euthanasia occurred at weaning [postnatal day (PN) 21] or adulthood (PN180). Key findings: At weaning, BPA10 female pups had higher plasma cholesterol and triacylglycerol. BPA10 male pups showed lower plasma T3. BPA10 pups of both sexes had higher plasma progesterone, testosterone and estradiol. At adulthood, females of both BPA groups had lower food intake and higher insulinemia, whereas males had lower visceral fat, lower progesterone and testosterone concentrations. BPA10 females and males had lower T4 levels, while only males showed lower estradiol. BPA50 females showed lower fat mass, higher lean mass and lower corticosteronemia, while males had lower food intake. In the feeding study, BPA10 males ate more fat at 30 min, while BPA10 females and males ingested less fat after 12 h. BPA10 females showed hyperactivity while both groups showed less exploration. Significance: Maternal exposure to BPA during gestation and lactation, even at low doses, induces life-long changes in the regulation of metabolic homeostasis of the progeny, affects sex steroids and thyroid hormones levels, compromises behavior, but does not lead to obesity or dyslipidemia.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available