4.7 Article

Sequentially inducible mouse models reveal that Npm1 mutation causes malignant transformation of Dnmt3a-mutant clonal hematopoiesis

Journal

LEUKEMIA
Volume 33, Issue 7, Pages 1635-1649

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/s41375-018-0368-6

Keywords

-

Funding

  1. National Institutes of Health (NIH), National Cancer Institute (NCI) [R21CA184851]
  2. National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) [R56DK112947, R01DK118072]
  3. NCI Cancer Core Grant [P30CA034196]
  4. Nathan Shock Center Grant [P30AG038070]
  5. Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) [T32HD007065]
  6. V Foundation V Scholar award
  7. Maine Cancer Foundation
  8. NCI [R35CA197594]
  9. NIH Office of the Director grant [U54OD020355]
  10. American Society of Hematology (ASH) Scholar Award
  11. Pyewacket Fund at The Jackson Laboratory
  12. Leukemia & Lymphoma Society (LLS)
  13. MSKCC [NCI P30CA008748]

Ask authors/readers for more resources

Clonal hematopoiesis (CH) is a common aging-associated condition with increased risk of hematologic malignancy. Knowledge of the mechanisms driving evolution from CH to overt malignancy has been hampered by a lack of in vivo models that orthogonally activate mutant alleles. Here, we develop independently regulatable mutations in DNA methyltransferase 3A (Dnmt3a) and nucleophosmin 1 (Npm1), observed in human CH and AML, respectively. We find Dnmt3a mutation expands hematopoietic stem and multipotent progenitor cells (HSC/MPPs), modeling CH. Induction of mutant Npm1 after development of Dnmt3a-mutant CH causes progression to myeloproliferative disorder (MPD), and more aggressive MPD is observed with longer latency between mutations. MPDs uniformly progress to acute myeloid leukemia (AML) following transplant, accompanied by a decrease in HSC/MPPs and an increase in myeloid-restricted progenitors, the latter of which propagate AML in tertiary recipient mice. At a molecular level, progression of CH to MPD is accompanied by selection for mutations activating Ras/Raf/MAPK signaling. Progression to AML is characterized by additional oncogenic signaling mutations (Ptpn11, Pik3r1, Flt3) and/or mutations in epigenetic regulators (Hdac1, Idh1, Arid1a). Together, our study demonstrates that Npm1 mutation drives evolution of Dnmt3a-mutant CH to AML and rate of disease progression is accelerated with longer latency of CH.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available