4.3 Article

Bacterial biofilm formation on indwelling urethral catheters

Journal

LETTERS IN APPLIED MICROBIOLOGY
Volume 68, Issue 4, Pages 277-293

Publisher

WILEY
DOI: 10.1111/lam.13144

Keywords

biofilms; catheters; Proteus mirabilis; Urinary tract infection

Funding

  1. Medical Research Council
  2. Public Health England, as an iCASE Studentship [MR/P015956/1]
  3. Wellcome Trust [206854/Z/17/Z]
  4. MRC [1990052] Funding Source: UKRI
  5. Wellcome Trust [206854/Z/17/Z] Funding Source: Wellcome Trust

Ask authors/readers for more resources

Urethral catheters are the most commonly deployed medical devices and used to manage a wide range of conditions in both hospital and community care settings. The use of long-term catheterization, where the catheter remains in place for a period >28 days remains common, and the care of these patients is often undermined by the acquisition of infections and formation of biofilms on catheter surfaces. Particular problems arise from colonization with urease-producing species such as Proteus mirabilis, which form unusual crystalline biofilms that encrust catheter surfaces and block urine flow. Encrustation and blockage often lead to a range of serious clinical complications and emergency hospital referrals in long-term catheterized patients. Here we review current understanding of bacterial biofilm formation on urethral catheters, with a focus on crystalline biofilm formation by P. mirabilis, as well as approaches that may be used to control biofilm formation on these devices. Significance and Impact of the Study Urinary catheters are the most commonly used medical devices in many healthcare systems, but their use predisposes to infection and provide ideal conditions for bacterial biofilm formation. Patients managed by long-term urethral catheterization are particularly vulnerable to biofilm-related infections, with crystalline biofilm formation by urease producing species frequently leading to catheter blockage and other serious clinical complications. This review considers current knowledge regarding biofilm formation on urethral catheters, and possible strategies for their control.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available