4.4 Article

Microstructure and Oxidation Performance of TiAl-(Cr, Nb, Ta) Coatings Fabricated by Warm Spray and High-Velocity Oxy-Fuel Spraying

Journal

JOURNAL OF THERMAL SPRAY TECHNOLOGY
Volume 28, Issue 3, Pages 563-579

Publisher

SPRINGER
DOI: 10.1007/s11666-019-00837-5

Keywords

coatings for engine components; high-temperature oxidation; interlayers; spray forming

Ask authors/readers for more resources

To improve the oxidation resistance of near -titanium alloy IMI834, TiAl-(Cr, Nb, Ta) coatings were deposited by applying high-velocity oxy-fuel (HVOF) and warm spray (WS). Comparison was made in terms of microstructure, surface morphology as well as isothermal and cyclic oxidation behaviors in the air at 750 degrees C up to 100h and 100 cycles, respectively. The results show that smoother and less oxidized coatings were deposited by warm spraying. The microstructure of all coatings underwent an appreciable change during the oxidation tests, as in as-sprayed state it occurred in the nonequilibrium state. It was revealed that a small difference in the initial oxidation between the two spraying processes as well as microstructure, the level of porosity and surface roughness significantly influences the oxidation kinetics of the sprayed coatings at high temperature, which should affect the service lifetime as an oxidation-resistant layer for potential applications. After exposure at 750 degrees C in air, rutile TiO2 was found in addition to -Al2O3 in the oxide scale formed on the HVOF and warm sprayed coatings. However, isothermal and cyclic oxidation tests of all WS TiAl-(Cr, Nb, Ta) coatings showed improved oxidation resistance of IMI 834 as well as good adherence to the substrate alloy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available