4.7 Review

A review on using nanofluids in heat pipes

Journal

JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY
Volume 137, Issue 6, Pages 1847-1855

Publisher

SPRINGER
DOI: 10.1007/s10973-019-08094-y

Keywords

Heat pipe; Nanofluid; Flow regime; Thermal conductivity

Ask authors/readers for more resources

The thermophysical specifications of working fluid play a key role in thermal performance of various types of heat pipes. Fluids with high thermal conductivity, low viscosity and surface tension are more favorable to be applied in heat pipes. In order to have fluids with higher thermal conductivity, adding nanoparticles can be an acceptable idea. In the present study, the effects of using nanofluids in several types of heat pipes are reviewed. The nanofluids are categorized based on the types of particles (as carbonic, metallic, etc.). Based on the results of the literature review, applying nanostructures in the base fluid can significantly reduce the thermal resistance of heat pipes compared with utilizing pure as operating fluid. For instance, it is observed that using graphene oxide/water nanofluid in pulsating heat pipe reduces the thermal resistance up to 42% in comparison with the water-filled heat pipe. In addition, reviewed studies revealed that the type of nanoparticle, concentration and their stability are among the most important parameters affecting thermal performance. The enhancement in thermal performance of heat pipes by using nanofluid is mainly attributed to higher thermal conductivity of the nanofluids and increase in nucleation sites.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available