4.6 Article

Controlled mercerization of bacterial cellulose provides tunability of modulus and ductility over two orders of magnitude

Journal

Publisher

ELSEVIER
DOI: 10.1016/j.jmbbm.2018.11.005

Keywords

Bacterial cellulose; Mercerization; Mechanical properties; Tissue engineering

Ask authors/readers for more resources

Effects of mercerization process on plant-based cellulose is well studied in the literature whereas the effects of mercerization on mechanical properties of bacterial cellulose is not investigated. In this work bacterial cellulose (BC) was mercerized in NaOH solution with different molar concentrations of 0, 1.50, 1.75, 2.00, 2.13, 2.25, 5.00, 7.00 and 10.00 M. The BC samples shrunk substantially with increasing NaOH concentration. At the same concentration, NaOH treatment resulted in significantly larger shrinkage than KOH treatment. Mercerization of BC samples in 7 M NaOH resulted in an order of magnitude increase in elongation from 5.4 +/- 1.6% to 50.8 +/- 5.7% along with about 30-fold reduction in Young's modulus. Mercerized samples in 4 M NaOH had maximum toughness among all groups at a value of 64.0 +/- 15.8 MJ m(-3). Changes in BC crystalline structure from cellulose I to cellulose II were characterized and confirmed semiquantitatively by using X-ray diffraction (XRD) and Raman spectroscopy. Results of this work demonstrated mercerization as a method to tune the mechanical properties of BC precisely. Mercerized BC as a biocompatible material with tunable mechanical properties shows potential to be utilized in tissue engineering and regenerative medicine in the future.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available