4.6 Article

Development of a femtosecond time-resolved near-IR multiplex stimulated Raman spectrometer in resonance with transitions in the 900-1550 nm region

Journal

ANALYST
Volume 141, Issue 14, Pages 4283-4292

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c6an01051b

Keywords

-

Funding

  1. JSPS KAKENHI [JP24750023, JP24350012]
  2. MEXT KAKENHI [JP26104534, JP16H00850, JP26102541, JP16H00782]
  3. Grants-in-Aid for Scientific Research [16H00782, 16H00850] Funding Source: KAKEN

Ask authors/readers for more resources

Charge transfer and charge delocalisation processes play key roles in the functions of large biomolecular systems and organic/inorganic devices. Many of the short-lived transients involved in these processes can be sensitively detected by monitoring their low-energy electronic transitions in the near-IR region. Ultrafast time-resolved near-IR Raman spectroscopy is a promising tool for investigating the structural dynamics of the short-lived transients as well as their electronic dynamics. In this study, we have developed a femtosecond time-resolved near-IR multiplex stimulated Raman spectrometer using the Raman pump pulse at 1190 nm and a broadband probe pulse covering the 900-1550 nm region. Spectral and temporal instrument responses of the spectrometer are estimated to be 5 cm(-1) and 120 fs, respectively. Time-resolved near-IR stimulated Raman spectra of poly(3-dodecylthiophene) (P3DDT) are recorded in toluene solution for investigating its structural changes following the photoexcitation. The spectra strongly indicate conformational changes of P3DDT in excited states associated with the elongation of its effective conjugation length. The results on P3DDT fully demonstrate the effectiveness of the newly developed femtosecond time-resolved near-IR stimulated Raman spectrometer.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available