4.5 Article

Permeation of supercritical CO2 through dense polymeric membranes

Journal

JOURNAL OF SUPERCRITICAL FLUIDS
Volume 144, Issue -, Pages 63-70

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.supflu.2018.10.009

Keywords

Supercritical carbon dioxide; Dense membranes; Polydimethylsiloxane (PDMS); Sorption; Permeability; Widom line

Funding

  1. Dutch Ministry of Economic Affairs
  2. Dutch Ministry of Infrastructure and Environment
  3. European Union Regional Development Fund
  4. Province of Fryslan
  5. Northern Netherlands Provinces
  6. Feyecon
  7. Avebe

Ask authors/readers for more resources

Supercritical carbon dioxide (scCO(2)) is used in the food industry as a water-extracting drying agent. Once saturated with water, the scCO(2) needs to be regenerated. A promising way of drying scCO(2) is by using H2O permeable membranes. Ideally, these membranes demonstrate low CO2 permeability. Here, we investigated the CO2 permeability of three types of dense membranes, Nafion, Natural Rubber and PDMS, of which the latter in more detail because of its ease of handling. The experimental conditions, temperature and pressure, resulting in minimum CO2 permeability ( = losses) were explored. Even though the absolute CO2 permeability depends on the intrinsic membrane material properties, its trend with increasing feed pressure is defined by the (super-critical) behavior of CO2, notably its density as a function of temperature and pressure. The data points to transitions within the supercritical regime, from the gaseous-like supercritical state to the liquid-like supercritical state, graphically visualized by the Widom line for CO2 density. Sorption measurements with PDMS membranes confirm this behavior that follows the diffusion-solution theory. In the gaseous state, the (normalized) permeability follows the (normalized) solubility, indicating a constant CO2 diffusivity. With increasing pressure and when entering the liquid-like (supercritical) regime, the diffusivity drops, resulting in a (normalized) permeability that starts to lag behind the (normalized) solubility.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available